If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5=14
We move all terms to the left:
3x^2-5-(14)=0
We add all the numbers together, and all the variables
3x^2-19=0
a = 3; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·3·(-19)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{57}}{2*3}=\frac{0-2\sqrt{57}}{6} =-\frac{2\sqrt{57}}{6} =-\frac{\sqrt{57}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{57}}{2*3}=\frac{0+2\sqrt{57}}{6} =\frac{2\sqrt{57}}{6} =\frac{\sqrt{57}}{3} $
| 2x-3(x+4)=20 | | y+2y+30=90 | | 5x+7.5=27.5 | | x+60+50=180 | | 4x(3x+2)+2x(3x-2)=2 | | Y+24=3*y | | (3x+10)^2=3x+30 | | a÷3+5=11 | | 22(j+18)=946 | | 5-(x-7)=4x+1 | | 3c=2c-4 | | 1+7x=11+x | | 2c=c-6 | | 8(x+5)+3=8x+9 | | 3c+1=c+2 | | 0.50(90-y)+0.20y=3.45 | | k+k=60 | | h+45=90 | | 10(5c-1)-2=48c+10 | | .50(5.5)+.20y=3.45 | | -25=u/3-4 | | 0.5(8x-6+2x)+10+2x=4x | | w^2+7w-96=0 | | -4(x+3)+8=-4 | | 0.50(5.5)+.20y=3.45 | | 4p-28=-4+p | | 3(6x+5)+4(3x+2)+5=30x+29 | | 36x^2+18x^2+6x=0 | | 2x+30+4x+60=180 | | -6y-7=-6y | | b+60+75=180 | | 6(w-7)-8w=-38 |